Single-step One-pot Synthesis of Graphene Foam/TiO2 Nanosheet Hybrids for Effective Water Treatment

نویسندگان

  • Weilin Wang
  • Zhaofeng Wang
  • Jingjing Liu
  • Zhengguo Zhang
  • Luyi Sun
چکیده

Millions of tons of wastewater containing both inorganic and organic pollutants are generated every day, leading to significant social, environmental, and economic issues. Herein, we designed a graphene foam/TiO2 nanosheet hybrid, which is able to effectively remove both chromium (VI) cations and organic pollutants simultaneously. This graphene foam/TiO2 nanosheet hybrid was synthesized via a facile single-step one-pot hydrothermal method. The structure of the hybrid was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The hybrid was evaluated for both chromium (VI) and organic pollutants (using methyl blue (MB) as an example) removal, and the removal mechanism was also investigated. During water treatment, graphene and TiO2 nanosheets function complimentarily, leading to a significant synergy. The hybrid exhibited outstanding chromium (VI) and MB removal capacity, much superior to the performance of the individual pure TiO2 sheets or pure graphene foam. The hybrid could also be easily separated after water treatment, and exhibited excellent recycle stability. Considering the very facile synthesis of this graphene foam/TiO2 nanosheet hybrid, and its excellent water treatment performance and recycle stability, such a hybrid is promising for large scale production for practical applications where both chromium (VI) cations and organic dyes are the main pollutants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-step One-pot Synthesis of TiO2 Nanosheets Doped with Sulfur on Reduced Graphene Oxide with Enhanced Photocatalytic Activity

A hybrid photocatalyst based on anatase TiO2 was designed by doping TiO2 with sulfur and incorporating reduced graphene oxide (TiO2-S/rGO hybrid), with an aim to narrow the band gap to potentially make use of visible light and decrease the recombination of excitons, respectively. This TiO2-S/rGO hybrid was successfully synthesized using a one-pot hydrothermal method via single-step reaction. Th...

متن کامل

Facile synthesis of the Ti3+ self-doped TiO2-graphene nanosheet composites with enhanced photocatalysis

This study developed a facile approach for preparing Ti(3+) self-doped TiO2-graphene photocatalyst by a one-step vacuum activation technology involved a relative lower temperature, which could be activated by the visible light owing to the synergistic effect among Ti(3+) doping, some new intersurface bonds generation and graphene oxide reduction. Compared with the traditional methods, the vacuu...

متن کامل

Tuning TiO2 nanoparticle morphology in graphene-TiO2 hybrids by graphene surface modification.

We report the hydrothermal synthesis of graphene (GNP)-TiO2 nanoparticle (NP) hybrids using COOH and NH2 functionalized GNP as a shape controller. Anatase was the only TiO2 crystalline phase nucleated on the functionalized GNP, whereas traces of rutile were detected on unfunctionalized GNP. X-Ray Photoelectron spectroscopy (XPS) showed C-Ti bonds on all hybrids, thus confirming heterogeneous nu...

متن کامل

One-pot, water-phase approach to high-quality graphene/TiO2 composite nanosheets.

A novel and facile process is reported for water-phase synthesis of high-quality graphene/TiO(2) composite nanosheets (GTCN) on a large scale using TiCl(3) as both a reducing agent and a precursor.

متن کامل

Influence of the Vacancies on the Buckling Behavior of a Single–Layered Graphene Nanosheet

Graphene is a new class of two-dimensional carbon nanostructure, which holds great promise for the vast applications in many technological fields. It would be one of the prominent new materials for the next generation nano-electronic devices. In this paper the influence of various vacancy defects on the critical buckling load of a single-layered graphene nanosheet is investigated. The nanosheet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017